Knowledge made accessible on Cardano.
Discord integrated AI to learn knowledge about your community and answer questions in real time.
The AI Agent for your Discord community
It learns and improve the knowledge base over time, and you have full control over it!
Let community members ask questions in your Discord server and get answers from past questions.
Get Started
To get started, invite Mesh AI to your Discord server:
Invite Mesh AIAfter you've invited Mesh AI to your server, you'll need to initialize the bot. To do this, run the following command in a channel that Mesh AI has access to in your Discord server:
!initmesh
Mesh AI will respond with a welcome message! You can now start using Mesh AI in your Discord server.
Ask any questions
To ask any question, just type the command:
/ask
Users might have to type /
and then select the /ask
command from the list of auto-suggested commands.
Mesh AI will respond with Embedded message containing the question. After a few moments, Mesh AI will respond with an answer to the question.
Fine-tune knowledge base
Mesh AI learns from your community and answers questions in real time.
There are 3 ways to fine-tune the knowledge base about your community.
1. Provide training data
You can provide training data to Mesh AI to help it learn about your community. To do this, run the following command in a channel that Mesh AI has access to in your Discord server:
/train
Mesh AI will respond with a message asking for the question and the answer. Providing both will create a question and answer pair in the knowledge base.
2. Reply to Mesh AI's message and react to it
First, you reply to Mesh AI's message with the correct answer.
Then, Mesh AI will add a 👍 reaction to your reply.
If you react with one of the following (positive) emojis on your reply:
👍 ✅ 💯 🔥 ❤️ 🙌 💪 🙏 👏 👌
Mesh AI will add your reply into the knowledge base.
3. React to a user's message that replied to another user's message
If you want to add a user's reply into the knowledge base, you can react to the user's reply with one of the following (positive) emojis:
👍 ✅ 💯 🔥 ❤️ 🙌 💪 🙏 👏 👌
Mesh AI then will add a 👍 reaction and add the reply into the knowledge base.
Note that, these are a list of negative emojis that you can use to indicate that a response is bad:
👎 🥶 😱 😵💫 😵 😡 🤬 🤮 🤢 👿
Implementation Roadmap
The current state of development of the Mesh AI is as follows
Title | Description |
---|---|
✅ Integration Of LLM With Discord Part 1 | This would involve connecting the LLM to the Discord API, allowing it to be used on multiple Discord servers within the Cardano and SingularityNET ecosystem. |
✅ Build Data Pipeline At Backend | Chat messages deem as potential training data are collected and organized |
✅ Build ML Ops Pipeline Part 1 | From data to training data to model training. |
✅ Training The Model | The LLM would need to be trained on Cardano and SingularityNET-related topics using data from Discord chats. This would involve collecting and pre-processing the data, and then using it to train the model. Note that this is ongoing process and this work will last as long as the service is up. |
✅ Build ML Ops Pipeline Part 2 | From model training to response serving |
✅ Integration Of ChatGPT With Discord Part 2 | For serving responses and collecting data feedback. |
✅ Testing And Debugging | The integration would need to be thoroughly tested and any bugs or issues would need to be identified and fixed. Note that this is ongoing process and this work will last as long as the service is up. |
✅ Deployment | Once the integration has been tested and debugged, it can be deployed to the Discord servers where it will be used |
✅ User Documentation And Training | Detailed documentation and user guides would need to be created to help community members understand how to use the service, and training would need to be provided to help community members get the most out of the service. |
Maintenance And Support | After the service is launched, it will need to be maintained and supported to ensure that it continues to function properly and to address any issues that arise. |
Monitor And Measure Performance | Regular monitoring of the service performance and usage is important to measure the success of the service and make any necessary adjustments. |